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This paper summarizes and cxtends some mathematical results for a model for a class 
of water-entry problems characterized by the geometrical property that the 
impacting body is nearly parallel to the undisturbed water surface and that the 
impact is so rapid that gravity can be neglected. Explicit solutions for the pressure 
distributions are given in the case of two-dimensional flow and a variational 
formulation is described which provides a simple numerical algorithm for three- 
dimensional flows. We also pose some open questions concerning the well-posedness 
and physical relevance of the model for exit problems or when there is an air gap 
between the impacting body and the water. 

1. Introduction 
The aim of this note is to review and extend the mathematical techniques available 

for analysing high-velocity entry flows into a half-space of inviscid fluid (water) in 
the absence of surface tension in cases where there is a small 'deadrise angle ' between 
the impacting body, be it liquid or solid, and the undisturbed free surface. In these 
cases the effect of gravity is small over most of the flow, and the contact region 
between the impacting body and the water half-space expands rapidly. The principal 
theoretical goal is to find that part of the contact region over which appreciable 
hydrodynamic forces are exerted. 

An excellent review of the subject has been given by Korobkin & Pukhnachov 
(1988). Also the pioneering but intuitive work of von Kirman (1929) and Wagner 
(1932) has recently been put on a firmer theoretical basis using matched asymptotic 
expansions (Cointe & Armand 1987; Wilson 1989; Cointe 1989). This approach forms 
the basis for our treatment of this class of problems, the first part of which can be 
regarded as an extension of the results of Cointe & Armand to non-self-similar 
motion. In addition to  this, we will mention the extension of the theory to include 
three-dimensional impact, air-cushion effects and some questions of stability. 

2. Impact by rigid bodies 
Mathematically, the best-studied entry problem is the case of a two-dimensional 

self-similar geometry in which the impacting body is a wedge, gravity and 
compressibility are neglected throughout, and the effects of any cushioning fluid, 
such as air, between the wedge and the water are ignored. Theoretical studies of this 
case have been made by Wagner (1932), Garabedian (1953) and Mackie (1969) among 
others. The situation is too idealized to be of much practical value but it is 
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FIGURE 1 (a ,b) .  For caption see facing page. 

susceptible to numerical algorithms and experiments (see e.g. Dobrovol’skaya 1969 ; 
Hughes 1972 ; Greenhow 1987) and can give clues about more general cases. Of most 
interest for our purposes is the small ‘ deadrise’ limit ( E  $ 1 in figurela) in which the 
numerical and experimental evidence of Greenhow (1987) both suggest the formation 
of thin ‘jets ’ running up the sides of the impacting wedge. Indeed, the principal new 
phenomenon observed in this configuration is the existence of a very small region of 
high pressure on the body which enables a precise description of the jet formation 
mechanism to be given. This high pressure region is implicit in the work of Wagner 
(1932) and it has also been discussed in a more modern framework of matched 
asymptotic expansions by Watanabe (1986), Cointe & Armand (1987) and Wilson 
(1989). 

The wedge-entry problem is special in that  it has no lengthscale, but, by exploiting 
the smallness of E ,  we will be able to construct an approximate solution not just for 
a wedge with a small deadrise angle but for any impacting body z/L = f ( sx /L)  whose 
slope is small for 1x1 x O(L). By rescaling time, our approach can be modified to 
describe the initial stages of impact of a general smooth body for times such that the 
penetration depth is much smaller than the radius of curvature of the body a t  the 
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FIGURE 1 .  (a) Fluid entry geometry of a wedge at small deadrise angle. (b) Outer flow region 

(c) Inner flow region. (d )  Jet region. 

point of impact. In  such a case it is sufficient to approximate the body by a parabola, 
or a paraboloid in three dimensions. In these geometries the linearized problem (but 
not the full problem) has a similarity solution which is discussed by Cointe & Armand 
(1987) and Armand (1989). In this paper we will solve the linearized problem for a 
general uniformly shallow body. 

We will consider a non-dimensional model in which distances are made 
dimensionless with the penetration distance L,  velocity with a typical impact 
velocity V,, time with L / & ,  velocity potential with V,L and pressure with the liquid 
dynamic head corresponding to 5. Also, we will begin by taking V, to be constant 
and the initial free surface to be flat. The basic idea of the theories presented by 
Cointe & Armand (1987) and Wilson (1989) is that the flowfield decomposes into the 
three regions shown in figure 1 (a ) .  

There is a large outer region I in which, by resealing x = X / e ,  z = Z/E, and the 
velocity potential q5 = @ / e ,  we find that the liquid responds, to lowest order in e, to 
the normal impact of a flat plate 1x1 < d ( t )  moving in the negative 2-direction with 
unit speed (figure l b ) ;  the corresponding pressure is O ( E - ~ )  and the free-surface 
elevation is of the order of the penetration distance. There is also an inner region 11, 
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in which I X k d l  = 0 ( e 2 ) ,  which is a high pressure Kelvin-Helmholtz cavity flow with 
velocity O ( E - ~ ) ,  pressure 0(c2) ,  and extent O ( B )  as in figure 1 ( c ) .  Finally region 111 
is an equally high-velocity jet of length O(s-'), and thickness O ( E ) ,  but at a low 
pressure O ( E )  as in figure 1 ( d ) .  

The size d/E of the equivalent flat plate is determined, as suggested in Wagner 
(1932), by the condition that the leading-order free-surface elevation as X J. d in the 
outer flow should equal the wedge elevation as X t d to within the O(e2)  lengthscale 
of region 11. In terms of the leading-order outer velocity potential @ this elevation 
is 

I @ ( X , O , t )  = 0, 

(V@I + 0 as X2 +Z2 --f a, ( 2  d )  

and t = 0 is the time at which the impacting body meets Z = 0 . i  Hence if we write 
the wedge as Z = ef(X) a t  t = 0, 

and, since @ = Re { - ( Z +  (d2 ( t ) -  ( X +  iZ)2)h)>, (3) is simply 

Then, by inversion (Tollmien 1934), 

d-'(X) = - (4) 

We would clearly expect this result to apply to  more general symmetric impacting 
shapes than wedges, and we will say more about this later. Meanwhile we emphasize 
that the wetted area extends to the tip of the jet and thus exceeds 1x1 = d ;  it is only 
for 1x1 < d in region I and in region I1 that pressures of O(6-l) or greater are 
discernible. Indeed, the lowest-order surface pressure in the outer solution is 

1x1 > d .  

t It can be shown that (1 )  and (2) are equivalent to saying that, to lowest order in E ,  the volume 
of fluid displaced by the body (i.e. the area of the body below the undisturbed waterline Z = 0) is 
equal to the volume of fluid above the undisturbed waterline as computed from the model for 
region I ;  in other words, the flux into the jet is small compared to the net volume displaced. 
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FIGURE 2. Typical pressure distribution on a wedge y = ~1x1. 

As in Cointe & Armand (1987), we can find the lowe$-order solution in region I1 
by writing X--d = s2z, 2-s(f(d)-t) = s22,  @ - d X  = @ to obtain the free-boundarx 
problem shown in figure 1 (c). The boundary conditions on the potential function @ 
are such that its normal derivative vanishes and its tangential derivative has 
modulus d on the free boundary, and that a & / d  = 0 on 2 = 0. Matching with the 
first term in region I also gives that, as 2 + - ao, 

a&/ar? - i a6/a& - - d + ( - d/2(r? + i2)): 

and that the lower branch of the free boundary is described asymptotically by 
2 - - (2dz)$/d. We note that is invariant under a translation 
of r?. Again, as in Cointe & Armand (1987) we can use standard conformal mapping 
methods (Birkhoff & Zarantonello 1957) to obtain & + i!? = dw@+ i&) where, up to 
an arbitrary function of t  added to w, 

where w' = dw/d(r?+i@ and h,(t) is the asymptotic jet thickness as we approach 
region 111. Matching with region I gives 

h, = xd/8d2 (7) 

and the pressure distribution on the body in region I1 is given parametrically to 
lowest order by 

(8) 
d 2  

2s2 
p = -[l-[gf(E2-l)q2] 

where 

8 FLM 222 
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TABLE 1. Some explicit outer solutions for different f 

for 5 < - 1, > + 1 respectively ; 161 = co corresponds to the relative stagnation point 
2 = 0 where the maximum pressure occurs. 

I n  (8) we have arbitrarily chosen the relative stagnation point to be at 2 = 0. The 
problem of calculating the O(e)  correction to the distance of this point from X = d has 
been raised in Cointe & Armand (1987) and Wilson (1989). As in similar shock 
location problems in gasdynamics (Lardner 1986), its resolution seems to require a 
necessarily complicated second-order analysis of the outer solution. 

The jet region I11 is described to  lowest order by zero-gravity shallow-water 
theory and hence the tangential velocity u(X, t ) / e  and thickness sh(X, t )  are such 
that 

- 0. 
au au ah a(&) -+u-=o, -+-- 
at ax at ax 

The fact that  the mass flow in the jet is only 0(1) as E + O  confirms the mass 
conservation argument leading to  (1) .  
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FIGURE 3. Comparison of experimental and theoretical pressure histories. Experimental data from 
Nethercote et al. (1986) with L = 12 ft, V = 20 ft/s and E = 0.707 so that the dimensionless hull 
shape is y = ( 0 . 7 0 7 ~ ) ~ .  At the keel the theory predicts an infinite pressure and the oscillations 
observed experimentally are probably due to  air entrapment. 

Matching with region I1 gives u = 28, h = h, at X = d ,  and hence for the wedge 

To lowest order the jet is only affected by the shape of the impacting body through 
d( t )  ; however, the pressure on the body in the jet is determined by a higher-order 
analysis and depends on the body curvature K through 

p - - € K h U 2 ,  (11) 

where K has the sign off”. Also, from (4), it is easy to show that shocks (hydraulic 
jumps) will develop in the solution of (9a) if d < 0. For curved f, the jet pressure 
takes its lowest value on the body whenever it is convex and this might provide a 
criterion for whether or not the jet separates ; however, surface tension and gravity 

8-2 
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Body shape Cross-section in plane Equivalent flat plate 
z = E ( f ( X ,  Y ) - t )  z = o  t = w ( X ,  Y )  

x2+ P = t2 
Circular cone Circle Concentric circle 

f ( X ,  Y )  = (X2+ y2)t w ( X ,  Y )  = iX(X2+ ye)& 

Elliptic paraboloid Ellipse 'Confocal ellipse 

f ( X ,  Y )  = i( k ,  X z  + k ,  P) k , X 2  + k ,  P = 2t w ( X ,  Y )  = )k , (2-e2-az)XI  

Korobkin & Pukhnachov (1988) 

a = ( -2r (."+A) 
TABLE 2. Some known explicit solutions 

may have a controlling effect on this phenomenon (see Vanden-Broeck & Keller 
1989). 

Neglecting the jet pressure, the uniformly valid composite expansion for the 
pressure exerted on the wedge can now be constructed as in figure 2. The total 
dimensionless force exerted on the wedge is O(E?) ; the leading-order term, which just 
results from region I is, from (5), ndd/s2.  Some explicit outer solutions for different f 
are given in table 1, which also lists schematically the corresponding pressure 
distributions in 0 < X < d ( t )  as t increases. 

As mentioned above these results hold formally for arbitrary rigid body impact of 
a surface 2 = sf(X) whose deadrise angle is everywhere small and also, with slight 
modification, to  the case when v(X, 0) is non-zero but q X ( X ,  0) is O( 1) or when V, is 
non-constant and varies on a timescale L/V,. Indeed the small-time oblique impact 
of a circular cylinder on an initially circular free boundary has been analysed in this 
way by Cointe (1989) as a model for the interaction of spilling breakers with marine 
structures. However we can in general only treat cases in whichf(X) and y(X, 0) are 
even. 

Figure 3 compares the leading-order dimensional composite pressure (again 
neglecting the jet) exerted on a parabolic impacting body with pressure histories 
measured by Nethercote, Mackay & Menon (1986) for a hull of nearly parabolic cross- 
section. The agreement is good except on the keel, and this disparity is discussed 
further in $4, The use of the composite pressure to compute the force on a circular 
cylinder for small times after impact has been carried out more comprehensively, and 
compared with experiments, by Cointe & Armand (1987). These authors give a. 
helpful account of the way in which the force in this case falls from its initial, so- 
called Wagner value (namely xdd/s2)  towards the value which would be obtained if 
d were set equal to  the semichord in which the x-axis meets the cylinder (the so-called 
von KBrmBn value). 

We can also write down formally analogous results for the impact of a three- 
dimensional body z = f(m, BY) except that the inversion (4) is no longer available in 
general unless there is axial symmetry. Some of the known explicit solutions are 
listed in table 2, where y = Y / s  and the boundary of the equivalent flat 'disk' in 
2 = 0 is denoted by t = w(X, Y ) .  Analytical progress is easiest when there is axial 
symmetry, in which case the leading-order force on the body is 4+r2/e2, where r / e  is 
the radius of the equivalent disk. For a paraboloid with unit curvature the force is 
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6 1/3ti which is in fair agreement with the measurements of Moghisi & Squire (1981) 
for the initial stages of the impact of a sphere, where the force was approximately 
8.209. Further details of this are given in Wilson (1989). 

3. Variational formulation 
The three-dimensional version of the model described in $2 can in general only be 

solved numerically. An easily-implemented algorithm for carrying this out has been 
suggested by Korobkin (1982), and the transformation he uses has the added bonus 
of providing a framework in which t o  discuss the existence, uniqueness and 
regularity properties of the weak solution of the model, although we will not discuss 
these aspects here. 

In  the spirit of the so-called ‘Baiocchi transformation ’ in the theory of variational 
inequalities (Lions & Stampacchia 1967), we define a displacement potential 

@*(X, Y ,  2, t )  = @(X, Y ,  Z ,  7) d7 ; s, 
a simple calculation shows that 

V W * = O ,  z<o (13) 

with @*(X, Y ,  0, t )  = 0 for t c w(X,  Y ) .  (14a) 

Also for t -c o, 

but, for t > o, 

(1 + L) 3 7  

a@* - (X, Y ,  0, t )  = az 
= ?/qX,Y,o) - ( t -w)  

= f ( X ,  Y )  - t ,  

from the three-dimensional generalization of (1).  Hence as t + o+ 0, 

+ - t + f ( X ,  Y ) .  az 2-0 

Thus the great advantage of working with 9* instead of @ is that IV@*l is bounded 
on t = w and so @* satisfies the ‘complementarity problem’ (equivalent to  a 
variational inequality) 

V W * = O ,  z<o (164  

This provides both a mathematical basis for the expanding plate model (13), (14) and 
a minimization algorithm for numerical calculations (see for example Elliott & 



224 S.  D .  Howison, J .  R .  Ockendon and S. K .  Wilson 

I (in- l ) f  

FIGURE 4. Comparison of x , simple finite-element calculation and -, exact solution of the 
outer free-surface elevation during a two-dimensional wedge impact at t = 0.1. 

Ockendon 1982). A rough finite-element discretization for the case of wedge impact 
is given in figure 4 for comparison with the exact solution which is available 
analytically from (4) and table 1.  

We note that difficulties may arise with this procedure when the curve t = w ( X ,  Y )  
extends to infinity, as may be the case for an approximate model of the impact of a 
long ship with small deadrise angle a t  a small angle of attack. However i t  seems likely 
that if the angle of attack is much smaller than the deadrise angle the solution may 
be approximated by a sequence of two-dimensional solutions such as those shown in 
table 1. 

4. Generalized impact problems 
4.1. Air-cushion eSfects 

The above model neglects several mechanisms which are important in practical 
problems. Apart from those already mentioned, the most likely explanation for the 
discrepancy in the pressure readings illustrated in figure 3 for the evolution of a 
parabolic impact (Nethercote et al. 1986) is that air pressure is not negligible in the 
cushion between the solid and liquid. 

The simplest configuration in which to  discuss this mechanism is that of a flat- 
bottomed wedge approaching an initially horizontal free surface as in figure 5. This 
geometry has been studied experimentally by Driscoll & Lloyd (1982) and 
theoretically by Verhagen (1967) and Asryan (1972) and we assume the wedge itself 
has a large enough deadrise angle to  allow us to neglect air pressure in 1x1 > 1. If we 
also neglect air compressibility in 1x1 < 1 then the pressure gradient in the air is 
proportional to (aV/at) + V(aV/ax)  where V is its velocity, which is nearly in the x- 
direction except near the stagnation point. 

Now for a small surface elevation 7, the surface water pressure gradient is 
proportional to the Hilbert transform 
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X 

FIGURE 5. Air cushioning geometry 

Hence if we write 7 = ye71 and 77 = yd where y %- 1 is the initial aspect ratio of the 
cushion and 0 is the air to liquid density ratio, the continuity of pressure on z = 0 
requires 

The second relation between v" and i j  results from mass conservation in the air layer, 
namely 

for times t such that the air gap thickness is much less than unity. This model is 
mathematically intractable but as yB+O, we can solve (18) for v" and (17) for f to 
obtain 

v"- -  X q 2[2+xlog(G)]logltl 1-x 
t '  R 

as t t 0 .  
The fact that 71" -+ 00 as 1x1 + 1 suggests the initiation of the profile sketched in figure 

5, but whether this profile is attained in the presence of the nonlinear terms in (18) 
is unclear. However, the possibility of air escaping through narrow gaps at 1x1 = 1 
suggests that air compressibility effects will first become significant there ; such 
effects are discussed in Lewison (1970). 

4.2. Liquid-liquid and liquid-solid impacts 
Several of the ideas mentioned above apply to liquid-liquid and liquid-solid impacts 
at small deadrise angles. For example, the impact of two identical liquid cylinders 
along a common generator is identical to the impact of a solid plane on one of the 
cylinders and can be solved as described before table 1. 

For the case of an asymmetric impact with speeds V,, V, as in figure 5, it  is easy to 
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Y 

FIGURE 6. Fluid-fluid impact geometry. V, and V, denote the dimensionless speeds of the impacting 
fluid masses and the dashed curves are the positions each would have reached in the absence of the 
other. 

see by considering the flow in a frame moving in the 2-direction with speed $(&- K) ,  
in which the contact line is a t  rest, that the jet angle a is O ( E )  only if the high pressure 
peaks at X = d,( t )  are within O(B)  from each other. However the jet angle a can only 
be obtained by carrying out the analysis in region I1 to second order. 

5. Stability and exit problems 
We will only consider a stability analysis of the model for region I locally in space 

and time near the ‘free boundary’ X = d .  We thus only consider (1)-(3) with a semi- 
infinite plate 2 = 0, X < d .  

In the two-dimensional solution, @ has a square-root singularity at  the free 
boundary which means the local velocity is so large that we can neglect the impact 
speed, but not aT/at ,  in (2) compared to a@/aZ. When there are variations in the 
Y-direction, the approximate local model is thus 

V 2 @ = 0 ,  z<o, (20a) 

z = 0, 

with 7 + 0 as X J. d ;  also, to match with a two-dimensional solution, 

@ - A Re (-X-iZ)i (21) 

as X2 + y2 + Z2 + 00 where, because we are considering temporal variations which are 
short on the outer timescale, A is a constant. 
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This approximate model has an exact travelling wave solution independent of Y 
in the form 

@ = ARe(d-X-iZ)i (=a) 

d = Vt, 7 = -(A/V)(X-d)i, X > d, (22b) 
where V is arbitrary. Like A, V may also be chosen to match with the outer solution 
and A and V will in fact be related in any particular problem. The precise relationship 
is unimportant for our analysis but we note that A and V have the same sign and 
A > 0 corresponds to a plate expanding in an impact problem. Also 7 is negative 
because the water surface is depressed relative to the X-axis in our local coordinate 
system. 

It is convenient to change to moving axes E = X- Vt, which changes (20d) into 

and we denote the local boundary X = d by 

6 = 6cos(ny)eat+O(S2), n > 0;  

here 6 is a prescribed small number and a is the growth rate we are seeking. A naive 
expansion in powers of 6 yields 

B eat 
ri 

t + 6 ~ o s ( n y ) ~ , ( ~ ) e ~ ~ + O ( ~ ~ ) ,  7 = - - E  

= Ari sin (p) + 6 cos (ny) - - sin (9) e-nr + o(P),  

A 
V 

where r = (E2+Z2)i, 0 are polar coordinates and B is an undetermined 
These expansions satisfy (20a-c) and then (23) implies that 

so that 

after integration by parts. Here C is another constant, and at the moment CT is 
arbitrary. Now if a / V  > 0, we can only satisfy the condition that 

7, = o(& as [+ 00 

ds 
C = - ( g / V + n )  e-(u/v+n)s- = - (m/~+n) tn f ,  

if (om St 

whereas if a / V  < 0, this condition is satisfied even if C remains arbitrary. 

expansion in which E = SC, Z = 6 2 ,  @ = &@', 7 = &7', and (23) becomes 
However, the expansion (25) is invalid for r = O(S), and this necessitates an inner 

The inner expansion then proceeds 

0' N A Re (cos (ny) eut - 5'- i 2 ) i  + . . . (284  
7' - -(  A/V)(~-cos(ny)ea t )~+ ..., C > cos(ny)eUt, (28b) 
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the next terms being of O(S) apart from any extra terms generated by matching with 
the outer expansi0n.t A further matching of the two-term outer with the one-term 
inner expansion for @ shows that B = $4. 

Now the inner expansion of (26b) takes the form 

The first term in (29) automatically matches the term of O(f'-i) in the expansion of 
(28 b) as f'+ co but the second term generates a constant of O(d) with which the next 
term in (28b) has to match. This would lead to a potential problem for the second 
term in the expansion for W which would have to satisfy homogeneous Neumann 
and Dirichlet data on 2' = 0, f' < cos (ny) e"t, f' > cos (ny) eUt respectively and be 
such that its normal derivative on 2' = 0, 5' < cos(ny)eut had finite integral. The 
boundary conditions mean that such a function would have to be a combination of 
square roots of f '+ iZ  and no such function has the required finite integral. We 
conclude that the term &4C in (29) is zero; hence if u/V > 0, g/V+n = 0 which is 
impossible. Thus u and V must have opposite signs, which suggests that an 
expanding plate problem is stable but that an 'exit ' problem when V < 0 is unstable. 

The fact that we are unable to write down a dispersion relation between u and n 
is related to the behaviour of the solution of the linear initial-value problem for (20) 
in which the initial condition 7 = SZ(t), say, at t = 0 is imposed instead of (24). We 
will not pursue the details here but we note that (23) now yields a first-order partial 
differential equation for the difference between T,I and - ( A / V )  g .  The characteristics 
are (+ Vt = constant, but we need to solve in ( 2 0 and data is prescribed at  t = 0; 
hence the problem cannot be solved without some continuation process involving SZ 
if V < 0. 

The above analysis suggests there may be marked differences between exit and 
entry problems. Even though any solution of our expanding plate model can be 
reversed in time to give the solution of an exit problem with initial conditions 
identical to those encountered in the evolution of an entry problem, this tells us very 
little about the evolution of the exit problem for arbitrary initial data. In addition 
to the stability argument, differences between the two situations are suggested by 
the facts that 

(i) time reversal in an entry problem reverses the sign of the pressure in region I; 
hence, from table 1,  large negative pressures are predicted which could invalidate the 
model by causing the boundary of the contracting plate to break up ; 

(ii) the smoothing transformation (12) can still be applied to the exit problem but 
we can no longer derive the crucial boundary condition (14) in the region traversed 
by t = o(X, Y ) .  This difficulty also prevents us writing down an integral equation 
corresponding to (3) without some extra physical assumption about the nature of 7 
in this region. 

Finally, we note that a formal solution to any exit problem in the absence of 
gravity is that the body instantaneously loses contact at all points and q(x, t )  G ~ ( z ,  0). 
However, further work is needed to see if there is a mathematical interpretation 
which is in better agreement with the observations of Greenhow (1988). 

needed to determine the higher-order terms in the free-boundary position (24). 
t The expansion (28) is itself invalid near 5' = 2' = 0 because repeated inner expansions are 
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6. Conclusion 
We have presented a brief account of the theory of small deadrise impacts between 

solids and liquids, assuming for the most part that  surface tension, gravity, viscous 
and compressible effects can be neglected. This enables explicit solutions to  be 
calculated for the pressures exerted on the impacting body in two-dimensional and 
axisymmetric cases. Moreover, general three-dimensional impacts can be reduced to 
a variational formulation which is suitable for numerical discretization, and which 
avoids explicit reference to  the boundary of that part of the impacted region where 
high pressures are exerted. 

Although the results of these calculations have been shown to agree quite well with 
experimental evidence, several of the solutions we have described suggest that  some 
or all of the neglected effects may be important in localized regions. In  particular 
more realistic analyses of the jet tip and of jet separation may be needed. Another 
important open question concerns the formulation of exit problems which, even in 
the absence of gravity, do not seem to be well described in the small deadrise limit 
as time reversals of entry problems. 
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